Restricted modules for gap-p Virasoro algebra and twisted modules for certain vertex algebras

نویسندگان

چکیده

This paper studies restricted modules of gap-p Virasoro algebra gp and their intrinsic connection to twisted certain vertex algebras. We first establish an equivalence between the category gp-modules level ℓ_ VNp(ℓ_,0), where Np is a new Lie algebra, ℓ_:=(ℓ0,0,⋯,0)∈C[p2]+1, ℓ0∈C action center. Then we focus on construction classification simple ℓ_. More explicitly, give uniform as induced modules. present several equivalent characterizations gp-modules, locally nilpotent (equivalently, finite) with respect positive part gp. Moreover, are classified. They either highest weight or At end, exhibit concrete examples (including Whittaker modules).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted modules for vertex operator algebras

In this contribution, I explain the general principles of twisted modules for vertex operator algebras in its powerful formulation using formal series, and derive new general relations satisfied by twisted and non-twisted vertex operators. I prove new “equivalence” and “construction” theorems, identifying a very restricted set of sufficient conditions in order to have a twisted module for a ver...

متن کامل

Whittaker Modules for the Twisted Heisenberg-virasoro Algebra

We define Whittaker modules for the twisted Heisenberg-Virasoro algebra and obtain analogues to several results from the classical setting, including a classification of simple Whittaker modules by central characters.

متن کامل

Twisted modules for vertex algebras associated with vertex algebroids

We continue with [LY] to construct and classify graded simple twisted modules for the N-graded vertex algebras constructed by Gorbounov, Malikov and Schechtman from vertex algebroids. Meanwhile we determine the full automorphism groups of those N-graded vertex algebras in terms of the automorphism groups of the corresponding vertex algebroids.

متن کامل

Twisted Modules over Lattice Vertex Algebras

A vertex algebra is essentially the same as a chiral algebra in conformal field theory [2, 10]. Vertex algebras arose naturally in the representation theory of infinite-dimensional Lie algebras and in the construction of the “moonshine module” for the Monster finite simple group [3, 9]. If V is a vertex algebra and Γ is a finite group of automorphisms of V , the subalgebra V Γ of Γ-invariant el...

متن کامل

Twisted modules for vertex operator algebras and Bernoulli polynomials

Using general principles of the theory of vertex operator algebras and their twisted modules, we obtain a bosonic, twisted construction of a certain central extension of a Lie algebra of differential operators on the circle, for an arbitrary twisting automorphism. The construction involves the Bernoulli polynomials in a fundamental way. This is explained through results in the general theory of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2023

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2023.107322